Almost global well-posedness of Kirchhoff equation with Gevrey data

نویسندگان

  • Tokio Matsuyama
  • Michael Ruzhansky
چکیده

Article history: Received 26 November 2016 Accepted after revision 3 April 2017 Available online 18 April 2017 Presented by the Editorial Board The aim of this note is to present the almost global well-posedness result for the Cauchy problem for the Kirchhoff equation with large data in Gevrey spaces. We also briefly discuss the corresponding results in bounded and in exterior domains. © 2017 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Well-posedness for the Periodic Korteweg-de Vries Equation in Analytic Gevrey Classes

Motivated by the work of Grujić and Kalisch, [Z. Grujić and H. Kalisch, Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions, Differential and Integral Equations 15 (2002) 1325–1334], we prove the local well-posedness for the periodic KdV equation in spaces of periodic functions analytic on a strip around the real axis without shrinking the width of...

متن کامل

Invariant Weighted Wiener Measures and Almost Sure Global Well-posedness for the Periodic Derivative Nls

In this paper we construct an invariant weighted Wiener measure associated to the periodic derivative nonlinear Schrödinger equation in one dimension and establish global well-posedness for data living in its support. In particular almost surely for data in a Fourier-Lebesgue space FL(T) with s ≥ 1 2 , 2 < r < 4, (s − 1)r < −1 and scaling like H 1 2 (T), for small ǫ > 0. We also show the invari...

متن کامل

Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation

We prove global well-posedness for the cubic, defocusing, nonlinear Schrödinger equation on R2 with data u0 ∈ H s(R2), s > 1/4. We accomplish this by improving the almost Morawetz estimates in [9].

متن کامل

Probabilistic global well-posedness for the supercritical nonlinear harmonic oscillator

— Thanks to an approach inspired from Burq-Lebeau [6], we prove stochastic versions of Strichartz estimates for Schrödinger with harmonic potential. As a consequence, we show that the nonlinear Schrödinger equation with quadratic potential and any polynomial nonlinearity is almost surely locally well-posed in L(R) for any d ≥ 2. Then, we show that we can combine this result with the high-low fr...

متن کامل

Global Well-posedness and Scattering for the Mass-critical Nonlinear Schrödinger Equation for Radial Data in High Dimensions

We establish global well-posedness and scattering for solutions to the defocusing mass-critical (pseudoconformal) nonlinear Schrödinger equation iut + ∆u = |u|4/nu for large spherically symmetric Lx(R n) initial data in dimensions n ≥ 3. After using the reductions in [32] to reduce to eliminating blowup solutions which are almost periodic modulo scaling, we obtain a frequency-localized Morawetz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017